FPURINA Institute

Advancing Science for Pet Health

OBESITY IN PETS:

Nutritional and Behavioral Strategies for Preventing and Managing Excess Weight

CONTENTS

An obese or overweight body condition occurs when energy intake exceeds energy expenditure on a chronic basis, resulting in an excessive deposition of lipids in white adipose tissue. An obese or overweight body condition adversely affects a pet's quality of life due to an increased risk of many chronic diseases, including osteoarthritis and feline diabetes, and has been shown to reduce longevity. ${ }^{1-6}$ Despite the serious health consequences of obesity, research shows that pet owners often do not perceive their pet's weight as a problem. ${ }^{7-11}$ In addition, many veterinarians find it challenging to talk with clients about their pet's weight. ${ }^{12}$ However, effectively communicating the significance of maintaining a healthy body condition and the role of nutrition in preventing and managing weight gain can help dogs and cats lead better, and importantly, longer lives.12

2	Definition \& diagnosis
3	Prevalence
3	Etiology \& risk factors
4	Adverse effects of obesity
8	Energy requirements in dogs \& cats
8	Obesity prevention
Weight loss strategies	
10	Partnering with owners \& understanding their motivations 12
15	The role of nutrition
17	The role of the microbiome in obesity
23	Appendix

DEFINITION \& DIAGNOSIS

The World Health Organization defines obesity in humans as an excess of body fat frequently resulting in adverse health effects. A body mass index (BMI, a measure of body fat in adults calculated based on height and weight) greater than 25 is considered overweight, and a BMI over 30 is considered obese in humans. ${ }^{13}$ There is no agreed-upon quantitative definition of obesity in pets, with a body weight such as 20,25 , or 30% above ideal body weight cited. ${ }^{11,4 / 46}$ However, while it is useful to monitor body weight, weight is just one component of a healthy body condition. The variation within breeds, especially mixed breeds of dogs, makes it difficult to assign one number that defines an individual pet's ideal weight. In addition, body weight can remain the same while fat mass increases and lean body mass decreases.

Body Condition Score

A widely accepted and practical method of assessing excess adiposity in dogs and cats is the body condition score (BCS) system. ${ }^{1520}$ The BCS system is a subjective and semi-quantitative method that uses visual and palpable characteristics to assess body fat and estimate a pet's optimal body weight, regardless of breed or body size.

Purina scientists developed a 9-point Body Condition Score system for dogs ${ }^{17}$ and cats ${ }^{18}$ that is currently recommended for use by the World Small Animal Veterinary Association (WSAVA). The tools were independently validated in published, peer-reviewed studies and are now used by veterinarians worldwide. ${ }^{19221}$ (See Appendix for Purina Body Condition Score Charts.)

The ideal body condition is defined as a visible waist (when viewed from above) and abdominal tuck (side profile), and easily palpated ribs

For dogs, the ideal BCS is 4-5.
For cats, an ideal BCS is 5 .

Each point above the ideal BCS represents a 5 to 10% excess in body fat and 10 to 15% excess weight. ${ }^{17,8,8,20}$ Pets with a BCS of 8 or 9 are considered obese.

If a pet is identified as overweight or obese, underlying medical conditions that may affect the pet's body weight, such as hypothyroidism, should be ruled out. Implementation of a weight management program may need to consider comorbid conditions.

PREVALENCE

Obesity is a disease of global significance. In some populations, the prevalence of veterinary-diagnosed overweight and obese animals has been cited as up to 65% in dogs and up to 63% in cats. $7^{7,8,2745}$ As in humans, the prevalence of obesity in pet dogs and cats is rising. ${ }^{163,1,46,48}$

ETIOLOGY \& RISK FACTORS

Many factors may influence the development of an overweight or obese body condition in dogs and cats:

■ Genetic predisposition to weight gain. Dogs reported to be at greater risk of being overweight or obese include Labrador Retrievers, Golden Retrievers, Cocker Spaniels, Dachshunds, Dalmatians, Shetland Sheepdogs, Rottweilers, and Beagles, as well as mixed breed dogs. ${ }^{113,9,4,4,4,4,49}$ Cats at greater risk include mixed breeds, Manx, British Shorthair, Norwegian Forest Cats, and Persians. ${ }^{1130,323,4,50}$

■ Age. Middle-aged pets are more likely to be overweight or obese than young, senior, or geriatric pets. ${ }^{1,2,29,3,3,3,3,4,4,5}$ However, being overweight or obese in puppyhood or kittenhood may increase the risk as an adult. ${ }^{52}$ Kittens with a faster growth rate between 3 months and 1 year of age due to ad libitum feeding were more likely to be overweight as adults. ${ }^{53}$

■ Sex and neuter status. Research has shown an increased risk of overweight and obese body conditions in male cats and female dogs. ${ }^{11,2930,34}$ In both species and
sexes, neutering increases the risk of weight gain. ${ }^{112,9,90,32}$. ${ }^{34,4,4,4,9,5,54588}$ One study found 38% of neutered dogs were overweight or obese compared to approximately 25% of intact dogs. ${ }^{41}$

Research has shown that after neutering, dogs and cats increase food intake, thus energy intake. ${ }^{5254555964}$ The increased risk of becoming overweight or obese after neutering may be related to the decrease in levels of sex hormones, especially estradiol, a hormone that has an inhibitory effect on appetite..22 Some studies have reported that dogs and cats expend less energy after neutering,,5,45,5,7,6,6,6,6,66 while other research has not. ${ }^{62,66}$ Results may vary due to differences in methodology (e.g., use of indirect calorimetry, level of food restriction necessary to maintain body weight, or level of physical activity as measures of energy expenditure), and questions remain as to whether and how much a change in energy expenditure is a factor. ${ }^{59}$ However, if neutering occurs during puppyhood or kittenhood when the growth rate has plateaued, it will coincide with a natural reduction in the pet's energy needs. 47,67

Levels of sex hormones may also affect physical activity, but data in pets is very limited. 5^{52} One study in female cats that had gained weight after neutering found changes in expression of genes involved in lipid metabolism, although whether this was a cause or effect of the weight gain was not determined. ${ }^{5}$

Environment and activity levels. As humans are leading more sedentary lifestyles, ${ }^{13}$ so, too, are pets. Many dogs and cats live inside and are fed meals and treats on a regular basis, resulting in reduced metabolic demands versus those of a dog or cat living outside and hunting for food. ${ }^{68}$ Research has shown an increased risk of excess weight in dogs who exercise infrequently ${ }^{56.58}$ and in cats that live indoors. ${ }^{1532,50}$

Excessive caloric intake. Feeding guidelines on commercial pet foods are based on pets' average energy requirements, which may differ from an individual pet's needs and can result in overfeeding by the owner. ${ }^{47}$

Advancing Science for Pet Health

Energy density of food varies widely. Since gram for gram, fat has approximately twice the calories as protein or carbohydrates, consuming a high-fat diet is a risk factor for becoming overweight or obese. A study found a highfat diet, but not a high-carbohydrate diet, led to weight gain in cats. ${ }^{69}$ Fat also typically enhances palatability, thus if fed ad libitum, the risk of overeating a high-fat die rather than other diets is higher.

Since the addition of water dilutes the energy density of a food, cats fed wet food consumed fewer calories and lost weight compared to when fed the same wet food in a freeze-dried form. ${ }^{\circ}$ Some research has suggested a dry food diet as a risk factor for becoming overweight or obese. ${ }^{5529}$ Dry food typically has a higher energy density, as fed, than wet food.7. ${ }^{1}$ Owners may overfeed dry food if feeding ad libitum or, if meal-feeding, by not measuring accurately. ${ }^{15,29,47}$ However, other studies have found no association with food type. ${ }^{27,72,8,44}$

Pets may have an "overeater" phenotype, while others may have a "grazer" phenotype. ${ }^{2}$ If fed ad libitum, those pets with an overeater phenotype will be more likely to consume excess calories. ${ }^{22}$ Some pets are also more likely to exhibit begging behavior or to steal food, increasing the risk of excessive caloric intake. ${ }^{73}$ In multi-cat households, stress and other group dynamics may result in altered behaviors such as overeating when group-fed. 7^{2}

■ Owner beliefs and behaviors. Pet owners themselves influence the development of excess weight in thei pets. ${ }^{5,1 / 476}$ Surveys have found that owners of overweight or obese pets were more likely to watch them during mealtime, give them table scraps or treats, ${ }^{515,6,74}$ and interpret any attention-seeking behavior as begging for food. ${ }^{74}$ A study found that owners who exhibited a high degree of attachment towards their dogs provided more treats and interacted more, which was associated with a higher body condition score. ${ }^{76}$ Pet owners may no measure or may inaccurately measure their pet's food and thus overfeed.7

The manner in which an owner feeds their pet may play a role, although research findings have been inconsistent.

Some research has found that owners of overweight or obese cats were more likely to feed ad libitum rather than meal feed, ${ }^{3,351}$ while a survey of Australian dog owners reported dogs fed once a day were at higher risk of obesity ${ }^{56}$

An association has been demonstrated between overweight or obese owners having overweight or obese pets. ${ }^{74,48}$

Pet owners may understand the health risks associated with excess weight, ${ }^{77}$ but may simply fail to recognize the condition in their own pets. Research has shown that pet owners often underestimate their pet's body condition. ${ }^{711,12,7,8,5,5,7,77,9,80}$

ADVERSE EFFECTS OF OBESITY

White adipose tissue does more than simply store excess energy; it is also an active endocrine organ. $44^{4,8,8,82}$ Adipocytes and other cells in white adipose tissue secrete hormones, cytokines, and other protein factors, known as adipokines. Adipokines have a variety of functions, including regulation of appetite and the inflammatory pathway. ${ }^{64,6,8,8,82}$

Various adipokines secreted by adipose tissue. TNF- $\alpha=$ tumor necrosis factor-alpha; $I L=$ interleukin; TGF- $-\beta=$ transforming
SAR
SA $=$ serth factor-beta; SAA $=$ serum amyloid $A ; C R P=C$-reactive protein; $P A 1-1=$ plasminogen $=$ macrophage migration inhibitory factor; NGF = nerve growth factor

Adipokines of particular importance in obesity include the hormones leptin, adiponectin, and resistin; and inflammatory cytokines, such as tumor necrosis factoralpha (TNF-a). Leptin influences energy expenditure and appetite and is considered pro-inflammatory. Normally, plasma levels of leptin rise after a meal and induce a feeling of satiety to stop eating. Adiponectin potentiates insulin signaling and is anti-inflammatory. $4,6,3,34$

Research has shown that secretion of adipokines is altered in obesity. In human studies on obesity, blood levels of inflammatory cytokines are systemically elevated. ${ }^{85}$ Similarly, research by Purina, as well as others, has shown that obese dogs and cats have increased concentrations of leptin and other inflammatory adipokines when compared to lean animals $54,8,8,4,4,6,8,9,95$ This causes, among other effects, a long-term, low-grade inflammatory state in the body. ${ }^{81}$

The chronically elevated levels of leptin seen in obesity are thought to induce leptin resistance, in which leptin's effects on curbing appetite are blunted. $6.44,8,8,8,9,90$ Research has shown that adiponectin levels are typically reduced in obese humans and cats, but in obese dogs, results have been inconsistent. $54,3,3,8,8,8,88,9,9,2,95$

Since adipose tissue is a source for these inflammatory compounds, elevated levels of inflammatory adipokines appear to be the link between obesity and many weightrelated diseases. $5.6,64$

Research has also shown that obesity is associated with a greater production of free radicals, which leads to increased oxidative stress. Oxidative stress contributes to tissue damage that also plays a role in the development of many diseases. ${ }^{33,94}$

It has been demonstrated that many of these adverse effects can be reduced or reversed with weight loss 8 8,88,9,9,9,96

Diseases commonly associated with an overweight or obese body condition in dogs and cats include:

Osteoarthritis. Osteoarthritis affects one in five adult dogs. ${ }^{97,98}$ This painful and progressive condition can reduce a pet's mobility and quality of life. It is the most common obesity-related condition for dogs, due to a combination of mechanical (the stress placed on he skeletal system by excess weight), metabolic, and biochemical factors.99,100

In a landmark Purina 14-year longevity study, researchers monitored the health of 48 Labrador Retrievers from puppyhood throughout their lives. ${ }^{1}$ The results showed that dogs fed to maintain a lean body condition from puppyhood throughout life had significantly less osteoarthritis. ${ }^{1,101,102}$

In the Purina study, findings included:

- By two years of age, the lean-fed dogs had half the frequency of hip dysplasia than dogs in the control group, and the hip dysplasia was much less severe. ${ }^{103}$

Figure 5:

Severity of hio dysplasia at 2 years of age (OFA method) ${ }^{\text {lo3 }}$

- At 8 years of age, lean-fed dogs had a lower prevalence of osteoarthritis in multiple joints. Forty-five percent of control-fed dogs had radiographic evidence of osteoarthritis in 2 joints compared to only 5% of leanfed dogs. Thirty-two percent of control-fed dogs had radiographic evidence of osteoarthritis in 3 joints versus only 5% of lean-fed dogs. ${ }^{101}$
- The mean age at which 50% of the dogs in each group first required long-term treatment for osteoarthritis was significantly later for the lean-fed group than for the control-fed group.

Figure 6:
Mean age at which long-term treatment of osteoarthritis was initiated'

- Lean-fed dogs not only lived on average 15% longer, ${ }^{1}$ but only 50% of the lean-fed group ultimately had radiographic signs of hip osteoarthritis compared to 83% of control-fed dogs. ${ }^{102}$

Additional research has shown that weight loss in overweight and obese dogs with osteoarthritis improved lameness scores. ${ }^{100,104}$

In cats, an association between excess weight and degenerative joint disease is not as clear. ${ }^{105} \mathrm{~A}$ prospective study of 1,457 cats found that overweight and obese cats were at higher risk (nearly 5 times the risk for obese cats) of being presented to a veterinarian for lameness. However, the study did not identify a cause for the lameness. ${ }^{106}$ Another study in cats found no association between weight and the prevalence of degenerative join disease. ${ }^{107}$

Diabetes mellitus. Obesity is the most recognized risk factor for type 2 diabetes in cats.

In healthy cats, pancreatic beta cells secrete insulin in response to elevated glucose levels in the bloodstream. Insulin stimulates cells to take up and utilize glucose and/or store excess glucose in the liver as glycogen. In type 2 diabetes, cats develop insulin resistance in which the cells are not as responsive to insulin. The pancreatic beta cells thus continue to secrete insulin. However, eventually the beta cells fail to compensate, and hyperglycemia persists

Obesity causes insulin resistance in cats. $14,95,108$ Research has shown:

(1)

- Insulin resistance
- Upregulates the inflammatory response
(1) TNF-a
- Inflammatory mediator
- Insulin resistance
- Adiponectin
- Inversely proportional to adiposity
- Potentiates insulin signaling
- Less adiponectin = more insulin resistance

Leptin

- Regulates appetite
- Obese individuals become resistant
- Insulin resistance

Figure 7
Adipse tissueactasal

Cardiorespiratory disease. Although obesity is not a primary risk factor for developing heart disease in dogs or cats, research has shown that a higher degree of intraabdominal fat is linked with a higher incidence of heart disease in dogs. ${ }^{110}$ Overweight dogs can also have the following: ${ }^{11}$

- higher resting heart rates and systolic blood pressure
- more inflammatory markers in their blood, a condition associated with heart disease
- abnormal thickness of the heart's left ventricle

Similar data are not available for cats. However, the links between obesity and feline diabetes and between feline diabetes and heart muscle dysfunction suggest an indirect association. ${ }^{12,13}$

In dogs and cats, obesity can compromise respiratory function. ${ }^{114116}$ In addition, excess weight may increase the risk for development of tracheal collapse in small dogs and can worsen laryngeal paralysis and brachycephalic airway obstruction syndrome. ${ }^{16,117}$

- Other conditions. In pets, obesity has also been linked with urinary disorders, ${ }^{29,3,4,4}$ hepatic lipidosis (cats), ${ }^{14,46}$ oral disease, ${ }^{34}$ skin conditions, ${ }^{16,34}$ and neoplasia. ${ }^{16}$

ENERGY REQUIREMENTS IN DOGS \& CATS

Maintenance Energy Requirement (MER) is the amount of energy expended by a moderately active adult animal per day. Energy requirements of animals are more closely related to their metabolic body weight, which is based on body surface area, than to their total body weight in kilograms or pounds. ${ }^{18}$

Numerous equations are available to estimate MER. Each equation may yield a different estimate, but all are based on the needs of an "average" dog or cat. However, individual
pets' needs can vary, based in part on age, gender, neute status, lifestyle/activity, and individual metabolism. Ca needs, and cat aging, in particular, are highly variable. While adult cats show a decrease in energy requirement up to about 12 years, energy requirements for cats over 12 years of age may increase due, at least in part, to a reduced ability to digest fat and protein. ${ }^{11}$

OBESITY PREVENTION

Preventing obesity is key to helping pets live longer healthier lives. The Purina 14 -year longevity study showed that puppies fed to maintain a lean body condition from puppyhood throughout life (the lean-fed group) had a longe lifespan than the control-fed group (median of 13 years versus 11.2 years). ${ }^{\text {D }}$ Dogs in the lean-fed group were first treated for a chronic condition significantly later in life on average than the control-fed group. ${ }^{1}$ A slower decline in immune status was also found in the lean-fed group. ${ }^{12}$

Tactics to help prevent dogs and cats from becoming overweight or obese include:

A nutritional assessment should be performed on every pet at every veterinary visit. ${ }^{12,122}$ The pet's complete dietary history, including everything (e.g., commercial or homemade pet food, raw food, human food [e.g., table scraps or food used to administer medications], and treats) the pet eats in a day and the brand names of food and treats, should be obtained. The use of open-ended inquiries to start a dietary history discussion with a pet owner rather than questions to be answered with a simple "yes" or "no," can aid in this process. ${ }^{12}$ The pet should be fed a complete and balanced diet appropriate to thei needs, e.g., life stage and lifestyle. ${ }^{12,122}$

■ Feeding the correct diet in the appropriate amount is essential. Pets should be fed to maintain ideal body condition. Estimates of MER (which provides a "daily calorie allowance") or feeding recommendations on pet food labels based on the pet's weight can provide a starting
guideline for how much to feed. However, the quantity of food should be adjusted based on monitoring of body condition and weight to meet an individual pet's needs. ${ }^{47}$

To ensure accuracy in measuring, the owner should ideally use a gram scale to measure food. Research has shown tha the use of a $250 \mathrm{ml} / 8 \mathrm{oz}$. measuring cup to dispense food, while perceived as more convenient, may be inaccurate, with smaller portion sizes being the most inaccurate. $4^{47,123}$ Research has also reported that scoop and food bowl size are positively correlated with the amount of food provided to the pet. ${ }^{124,125}$ Thus, using smaller food bowls may help guard against overfeeding.

In a multi-pet household, to prevent one pet from consuming excess calories by eating another pet's food, owners should feed pets separately or use an alternative feeding system such as a "smart bowl," which restricts access to an individual pet.

- For pets that eat rapidly, meals can be provided in puzzle feeders (commercial or homemade) to help slow the rate of eating which gives more time for satiety signals to reach the brain. Puzzle feeders also provide environmental enrichment. 47

Owners should be counseled to limit treats to no more than 10% of the pet's daily caloric intake. The amount of food should be reduced to account for the treats. ${ }^{47}$ If the pet is fed a dry kibble, the owner can utilize a portion of this as treats.

- Regular exercise should be encouraged to promote energy expenditure.

If prevention is not successful and the pet gains excess weight, the weight gain typically occurs gradually and thus may be overlooked by the owner and, potentially, the veterinarian. Recommendations to detect weight gain early when it is more easily addressed include:47

- A pet's body weight should be recorded at every veterinary visit and monitored over time. (The use of a "smart device" [e.g., a device placed under a litterbox which weighs the pet] or baby scale by the owner may aid in monitoring
weight in cats who can be more challenging to bring into he veterinary office on a frequent basis.) Thus, a pattern of changes in weight can be identified and addressed.

Teaching the pet owner how to perform BCS evaluations facilitates monitoring of body condition between veterinary visits. Although studies show that owners tend to underestimate the condition of their pet, ${ }^{711,2,7,8,5,5,2,77,9,80}$ some research has indicated that pet owners are better able to correctly identify BCS using an illustrated BCS chart rather than when using word descriptions of body condition. $7^{7,12}$

WEIGHT LOSS STRATEGIES

During development of a weight loss plan for an overweight or obese pet, MER can be calculated based on the pet's current body weight or on target body weight (estimated based on current weight and BCS). ${ }^{126}$ Online calculators for dogs and cats can be utilized. When making MER recommendations, it is important to note that drastic calorie restriction increases the risk of creating nutrient deficiencies, so obese pets should be monitored closely during weight loss. $6,7,16,127$ An alternative approach to making a recommendation based on MER calculations is to reduce current caloric intake, if a complete diet history is known. ${ }^{126}$ Regardless of the method used to determine daily calories, calculations are estimates, and adjustments will likely be needed to achieve desired weight loss. (See further discussion under Partnering with Pet Owners \& Understanding Their Motivations \& Behaviors.)

Rather than rapid weight loss, gradual loss, i.e., $\mathbf{1 - 2 \%}$ of body weight per week for dogs and 0.5% up to $1-2 \%$ of body weight per week for cats, helps maintain lean body mass and mitigate rebound weight gain. ${ }^{14,6,7128,129}$ Rapid weight loss in cats should also be avoided since it puts cats at risk of developing hepatic lipidosis. ${ }^{6,7,92}$ Due to this risk, it is essential to counsel cat owners to report immediately if their pet is refusing to eat the recommended diet for weight loss.

A therapeutic weight loss diet, formulated to provide complete and balanced nutrition with less caloric impact, , may be preferable to feeding a smaller amount of the pet's current food, as restricting maintenance diets may result in an inadequate intake of essential nutrients 6,130 and may also leave the pet unsatiated leading to food-seeking behaviors. ${ }^{6}$ If a pet owner elects to feed a homemade diet, a consultation with a board-certified veterinary nutritionist should be recommended to ensure a complete and balanced diet is fed. Many published recipes are nutritionally inadequate. ${ }^{131,132}$

The same environmental modification strategies utilized for preventing weight gain are used for weight loss, including accurate measurement of food, feeding pets in multi-pet households separately, meal feeding, and utilization of puzzle feeders. ${ }^{6773}$

A study of calorie-restricted cats that were changed from ad libitum feeding to two restricted meals a day showed that even mild dietary restriction can dramatically affect cats' feeding behaviors (leading to more food-motivated activity, gulping rations, acting more aggressively to other cats). The behaviors resolved with a return to free feeding. ${ }^{133}$ Such calorie-related changes may impact owner perceptions about the cat's well-being. This study supports feline weight loss recommendations to divide the day's daily ration into multiple small meals to be fed at intervals throughout the day. Utilizing puzzle feeders or other methods to slow the rate of eating, e.g., hiding food around the house, may help provide mental stimulation and increase activity. ${ }^{133}$

An increase in exercise, e.g., via walks for dogs, play sessions, climbing perches or "trees" for cats, helps the pet expend more calories, to help energy expenditure exceed energy intake. ${ }^{146,7 / 33}$ Creative exercise options, e.g., teaching a cat to walk on a leash or on a treadmill, may be successful. Dogs may be amenable to using treadmills or to swimming. ${ }^{14,47}$ However, the form of exercise should be appropriate for the pet and the pet's life stage. Any limitations on exercise imposed by comorbid conditions
should be considered 47 Exercise also helps the pet maintain lean body mass during weight loss and provides environmental enrichment as well as opportunities for pet-owner bonding that do not include food.

Increased activity may allow for less reduction in energy intake in a weight loss program. A Purinafunded study found that active dogs were able to consume more calories than inactive dogs while still losing weight. ${ }^{134}$

PARTNERING WITH OWNERS \& UNDERSTANDING THEIR MOTIVATIONS \& BEHAVIORS

Veterinarians are often reluctant to discuss excess weight with pet owners. They may find it to be a difficult subject, or worry about offending the owner. ${ }^{1,12}$ However, initiating the discussion is the first step in helping the pet.

Pet owner motivations and behaviors that contributed to the pet becoming overweight or obese (see earlier discussion under Etiology \& Risk Factors) must first be understood in order to design an effective weight loss strategy. ${ }^{12,7,9,80}$ Owner beliefs and behaviors also can affect an owner's ability to recognize the pet's excess weight, and subsequently, how ready and motivated the owner is to change their behavior(s).79

The transtheoretical model of change, one of many behavior models, identifies the following stages of readiness: ${ }^{12,79}$

- Precontemplation. The pet owner has not recognized or may refuse to recognize that the pet is overweight or obese. The owner is not prepared to change behavior. This is the time to introduce the idea of obesity as a disease.

Contemplation. The pet owner has recognized or accepted that the pet is overweight or obese and is thinking about ways to address the excess weight within the next 6 months. This is the time to offer help when the owner is ready.

■ Preparation. The pet owner is ready to act within the next month. This is the time to implement a weight loss plan.

■ Action. At this stage, the pet owner has made a change or multiple changes in behavior to help their pet lose weight. To be successful, the weight loss strategy must provide a complete and balanced diet while reducing calories by at least $10-15 \%$. Encouragement and celebration of success may be needed to keep the pet owner in the action stage.

■ Maintenance. Once the target weight is achieved, the pet owner is continuing the changes in behavior to protect against weight regain. Ongoing encouragement is important at this stage as well.

Recognizing where the owner is along the continuum of changing a behavior, especially through the first 3 stages, helps guide further discussion with the owner. ${ }^{12}$ Purina research showed that although owners of overweight and obese dogs were likely to underestimate their pet's body condition score, they were also more likely than owners of lean dogs to think about their dog's weight and to think that their pet was not fit. ${ }^{79}$ Asking the pet owner open-ended questions, such as to describe the pet's daily activities and changes in mobility or "fitness," may reveal concerns about the pet's weight that were not immediately evident. In turn, the pet owner may be more receptive than they initially appeared to be regarding a weight loss plan for the pet. ${ }^{79}$ If, however, an owner is in the action stage, but the pet has not yet lost weight, a discussion about alternative weight loss strategies is warranted before the owner becomes discouraged and the weight loss attempt is discontinued.

Research with owners of overweight dogs has suggested that a variety of behavior modification strategies can lead to successful weight loss in pets. $11,47,73,7,6,135$ Since an effective approach to behavior modification for one owner may not be effective for another, counseling may need to differ among owners. Weight management plans should be tailored to the needs of the individual pet and owner to have the bes chance of success.

Strategies may involve helping pet owners set attainable goals. In severely obese pets, to avoid a drastic decrease in calories at one time, a weight goal or goals between the current and target weight may be set. Multiple smaller goals can help keep pet owners motivated and engaged. ${ }^{14}$ "If/then help sheets" may be a useful tool. The help sheets involve, in collaboration with the pet owner, identification of "if" scenarios most likely to disrupt progress of weight loss with "then" responses. ${ }^{7377,35,136}$

Examples of common "if/then" scenarios
 and responses:

If pet will not eat the weight loss diet, try another diet.
If pet is perceived to be food seeking, start a play session.

If giving treats is very important, offer low-calorie options, e.g., restricted calorie treats or vegetables such as beans or cauliflower.

Research has suggested that a clear understanding of the weight management plan (feeding management and how much to exercise) by the owner is key to whether a pet loses weight. ${ }^{136}$ This includes an appreciation of the commitment involved in the weight loss plan and that weight loss will be a gradual process. ${ }^{99}$ The research also suggests that support from friends can help motivate owners. ${ }^{9} 9$

Frequent rechecks of body condition, weight, and muscle condition are crucial to assess progress, ensure compliance, make any necessary adjustments (e.g., to the diet or amount of food or to exercise strategies), and to encourage the owner. Research has shown that as a pet loses weight, energy needs may decrease and require an adjustment of the daily calorie allowance. $46,6,7,128,29,1377^{40} 0$ Over time, the rate of weight loss may slow, $137,240 \cdot 142$ which can make compliance progressively more difficult.

Research has demonstrated that only about 50-60\% of overweight or obese pets reach their target weight. ${ }^{14-144}$ Pets, owners, or both may be noncompliant with a weight loss plan, e.g., pets may refuse the new diet, owners may find it difficult to increase exercise. 143,144 Detecting and addressing these issues early through frequent rechecks (examinations and by phone or email) can help a weight loss program succeed.

The pet's lower energy needs also increase the risk of weight rebound after weight loss is achieved. ${ }^{128,137}$ Approximately half of the pets that successfully lose weight regain at least a portion of the weight. ${ }^{144146}$ Studies have shown that cats under 9 years of age and dogs that are switched from a therapeutic weight loss diet to a maintenance diet after weight loss are more likely to regain weight. Cats that lose weight are more likely than dogs to regain more than half of the weight lost..$^{145,246} \mathrm{To}$ help prevent weight rebound, the therapeutic weight loss diet may be continued, and regular monitoring of the pet's body condition, weight, and muscle condition should continue. ${ }^{47,128}$

To increase the likelihood of success:

■ Weight management plans for pets should incorporate nutrition, exercise, and an understanding of the interaction between pet and pet owner.

- Compliance increases when plans are tailored to suit each individual pet, owner, and environment
- Understanding the complex and unique connection between owners and their pets helps build long-term client trust.

THE ROLE OF NUTRITION

Since fat is more calorically dense than carbohydrates or protein, weight loss strategies have often focused on feeding low-fat diets. However, other dietary nutrients also play an important role in successful and sustainable weight loss.

Protein

Since a higher percentage of lean body mass, relative to fat, generally increases basal energy metabolism, maintaining lean body mass during weight loss can help prevent weight regain. ${ }^{26,18,4777149}$ Research has shown that increasing dietary protein levels can help overweight pets lose more weight as fat and less as lean body mass. $95,13,147,48,7,50$

In one study, overweight dogs were fed low-calorie diets that differed in protein levels, containing $20 \%, 30 \%$, or 39% protein (on a metabolizable energy basis). Dogs were fed to achieve a loss of 1% body weight per week until each dog reached an ideal body condition score.

The overweight dogs fed the 30% or 39% protein diets lost approximately half as much lean body mass and more fat mass than the dogs fed the 20% protein diet. ${ }^{147}$

■ bodyfat leanbodymass

Figure 8:
Protein reduces loss of lean body mass and increases fat loss. Numbers within bars indicate grams of tissue loss. Different superscripted letters
indicate statistically significant differences between diets (P So.05) 4/4

- Normal prote

Changes in body composition in cats fed 35% or 45% protein (on

In a feline study, obese cats were fed low-calorie diets that differed in the amount of protein (35% versus 45% of metabolizable energy). Cats were fed to achieve a loss of 1% body weight per week. Cats in both groups lost comparable amounts of total weight. However, compared with cats fed the 35% protein diet, the cats fed the 45% protein diet lost significantly more weight as fat and less as lean body mass. ${ }^{148}$ Additional research also found that obese cats fed a high-protein diet lost more fat mass than those fed a lowprotein diet. ${ }^{95}$

A high-protein diet may also mitigate the decrease in energy expenditure that occurs after weight loss, perhaps due to the higher thermogenic effect of protein compared to carbohydrate and fat: ${ }^{38,551,552}$

■ Energy expenditure on a body weight or lean body mass basis decreased after weight loss in obese cats fed a moderate-protein diet but did not in cats fed a high protein diet. ${ }^{150}$ Even when obese cats were fed ad libitum (i.e., not for weight loss), energy expenditure was lower in cats fed a moderate-protein diet compared to cats fed a high-protein diet. ${ }^{153}$

- While losing weight at the same rate, obese cats fed a high-protein diet initially consumed more calories than obese cats on a control weight loss diet. Once weight loss goals were met, all cats were fed an energyrestricted diet to maintain target weight. Over time, cats fed the high-protein diet during the weight loss period
consumed more calories than control cats. Higher energy intake, while initially losing weight and subsequently maintaining weight over the long term, reflects higher energy expenditure in cats fed the high-protein diet for weight loss. ${ }^{18}$ Thus, by allowing less energy restriction, high-protein diets may help prevent weight regain in addition to allowing more calories to be consumed during the weight loss period.

A study suggested that feeding a high-protein diet could improve satiety in overweight and obese dogs by mitigating leptin resistance. ${ }^{90}$ Levels of the pro-inflammatory C-reactive protein and interleukin-6 were significantly better in obese cats that lost weight while fed a high-protein low-calorie diet versus obese cats that lost weight while fed a highcarbohydrate low-calorie diet.94 The cats fed the highprotein diet also displayed reduced oxidative stress after weight loss. ${ }^{94}$

Dietary Fiber

Fiber is the fraction of a carbohydrate that cannot be broken down by the body's digestive enzymes. It can be classified as either soluble or insoluble, which simply describes whether it can dissolve in water. Many natural fibers contain a mixture of soluble and insoluble components. ${ }^{154}$

Fiber adds very little usable energy (i.e., calories) to the diet, thus it can be used to reduce the overall metabolizable energy content of a diet. ${ }^{6,4,1,45}$ Additionally, dietary fiber may support weight management by improving satiety. 6 , $1,4,47,40,155 \cdot 575$ Satiety is a physiologic state during or after eating in which hunger and appetite are inhibited. Unlike people, pets cannot report feeling "full." Thus, in feeding studies, hunger or satiety in pets is measured by changes in voluntary food intake. 156,157

In one study, dogs were fed either a low-fiber diet (2% crude fiber) or a high-fiber diet (9% crude fiber) during the morning feeding. During the afternoon feeding, both groups were fed an unrestricted amount of the control diet and were allowed to eat until their appetite was satisfied. Total daily calorie intake was significantly lower for dogs fed the highfiber diet compared to low-fiber. ${ }^{56}$

In other research evaluating the combination of high fiber and high protein, dogs fed a diet high in fiber and protein were more satiated than dogs fed a high-fiber diet or a high protein diet. ${ }^{155}$

Carnitine

Carnitine is an amino acid derivative that transports long chain fatty acids (LCFAs) into mitochondria to allow oxidation and to produce energy.

This key role in energy metabolism makes this substance beneficial in weight management. Although it is produced endogenously so long as protein intake is adequate, food and calorie restriction can lead to reduced protein intake and may compromise carnitine biosynthesis.

One study found that obese Labrador Retrievers had significantly lower plasma carnitine levels compared to lean Labrador Retrievers. However, whether the low carnitine levels contributed to or resulted from obesity could not be determined. ${ }^{58}$ Research has indicated that carnitine supplementation may help dogs preserve more lean body mass during weight loss, ${ }^{159}$ and enhance metabolism and weight loss in cats. ${ }^{160,161}$ The relative role of increased protein versus carnitine supplementation for this benefit has not been explored

Soy Isoflavones

Soy isoflavones are natural compounds with antioxidant activity that can aid in canine weight management. In humans, research shows that isoflavones may have a number of benefits, from helping to protect against certain kinds of cancers ${ }^{162}$ to lowering cholesterol, body weight, and the accumulation of abdominal fat. ${ }^{163,164}$

Figure 10:
Chemical structure of soy isoflavones

Purina research has identified several benefits of soy isoflavones that can help manage weight in dogs at risk of obesity. ${ }^{165168}$ When fed 25% above their maintenance energy needs, neutered dogs fed a diet enriched with isoflavones from soybean germ meal showed 50% less weight gain ${ }^{165}$ and reduced body fat accumulation compared to dogs fed similar amounts of a control diet. ${ }^{655167}$

Additionally, feeding neutered dogs an isoflavone-enriched diet:

■ increased energy metabolism ${ }^{167}$
decreased oxidative stress ${ }^{168}$
In cats, limited research has been done to evaluate the benefits of soy isoflavones. ${ }^{60}$ Further investigation is needed to determine relevance

Intermittent Caloric Restriction

Weight loss strategies for pets typically utilize continuous caloric restriction, or CCR, the same degree of energy restriction daily. Intermittent caloric restriction, or ICR, is an alternative approach utilizing periods of fasting or reduced caloric intake alternated with periods of unrestricted intake.

A Purina study compared obese cats that were fed 75% MER daily (a CCR weight loss program) to obese cats that were fed 75% MER for the 1 st half of the month and 100% MER for the remainder of the month (an ICR weight loss program). Cats in the CCR program were followed for 6 months and cats in the ICR program for 12 months, or until they reached ideal body condition. Overall, more cats in the ICR program reached ideal body condition by the end of the study. On a monthly basis, rates of fat and weight loss did not differ. Since cats in the ICR program were energy restricted for only half of the month, this suggested that they maintained higher energy expenditures than the cats in the CCR program. ${ }^{139}$

Intermittent caloric restriction may provide another option for weight loss. More studies are needed to develop optimal ICR regimens for obese pets.

THE ROLE OF THE MICROBIOME IN OBESITY

The gut microbiome (the collection of the microbiota, their genes, and the surrounding environmental conditions) plays a key role in energy metabolism and balance. Research has revealed an association between the gut microbiome and body composition. ${ }^{169172}$ Some studies have shown the gut microbiome of obese dogs and cats to be less diverse and less stable than that of lean pets. ${ }^{171 / 175}$ A more diverse microbiome may reflect a healthier microbiome. ${ }^{176}$ However, it is not clear if the differences observed are a contributing factor to the development of excess weight or if obesity causes these changes. ${ }^{177}$

Nutrigenomics is the study of how nutrition affects gene expression. Research by Purina and others has explored the effect of diet and weight loss on gene expression of gut microbiota and the metabolic pathways affected by the microbiota.

Macronutrients in the diet can affect the composition of the gut microbiome, i.e., the relative abundances of bacteria that are involved in metabolic pathways, such as those that ferment carbohydrates or hydrolyze proteins. ${ }^{172,173,17,1777}$ Research has demonstrated that the ratio of dietary protein to carbohydrate can affect the composition of the gut microbiome and influence metabolism in both dogs and cats. More significant effects were seen in overweight and obese animals than in lean animals. ${ }^{172,173,17,1777}$

In overweight and obese dogs fed a high-fiber, high-protein diet for weight loss, bacterial diversity increased ${ }^{77,174,175}$ and microbiome composition shifted to be more similar to the microbiome of lean dogs. ${ }^{175}$

A greater understanding of the complex relationships between diet, the microbiome, the metabolome, and body composition may present an opportunity for novel nutritional interventions to prevent or manage excess weight in pets.

A healthy weight starting from puppyhood or kittenhood is a crucial part of helping pets live better, longer lives. In combination with mitigating risk factors for obesity and promoting exercise, nutrition plays a key role in preventing and managing obesity. Understanding the motivations and behaviors of owners of overweight and obese pets can help direct approaches for behavioral modification. An individualized weight management plan developed in consideration of the needs of the pet and owner, and frequent rechecks can help ensure success.
32. Scarlett, J. M., Donoghue, S., Saidla, J., \& Wills, J. (1994). Overweight
cats: Prevalence and risk factors. International Joumal of Obesity and Related Metabolic Disorders, 18 (Suppl 1), S22-S28.
33. Russell, K., Sabin, R., Holt, S., Bradley, R., \& Harper, E.J. (2000).
Influence of feeding regimen Influence of feeding regimen on body condition in the cat. Journal of Small ,
34. Lund, E. M., Armstrong, P. J., Kirk, C. A., \& Klausner, J. S. (2005).
Prevalence and risk factors for obesity in adult cats fir reternce and risk factors for obesity in adult cats from private US Medicine, $3(2), 88-96$.
35. Corbee, R. J. (2014). Obesity in show cats. Journal of Animal Physiolog,
36. Courcier, E. A., O'Higgins, R., Mellor, D. J., \& Yam, P. S. (2010). Prevalence Scotland. Joumal of Feline Medicine \& Surgery 12, 746-753 Gasg
37. Courcier, E. A., Thomson, R. M., Mellor, D. J., \& Yam, P. S. (2010). An epidemiological study of environmental factors asso
obesity. Journal of Small Animal Practice, $51,362-367$. 38. Courcier, E. A., Mellor, D. J., Pendlebury, E., Evans, C., \& Yam, P. S. (2012).
An investigation into the epidemiology of eline obesity in Great Britain: Results of a cross-sectional study of 47 companion animal practises. Veterinary Record, 17(22), 560 . doi: 10.1136/vr.100953
39. Kronfeld, D. S., Donoghue, S., \& Glickman, L. T. (1991). Body condition and energy intakes of dogs in a referral teaching hospital. Journal of
Nutrition, 121 , S157-S 158 Nutrition, 121, S157-S158
40. McGreevy, P. D., Thomson, P. C., Pride, C., Fawcett, A., Grassi, T., \& Jones, B. (2005). Prevalence of obesity in dogs examined by Australian veterinary practices and the risk factors involved. Veterinary Record, 156 ,
41. Lund, E. M., Armstrong, P. J., Kirk, C. A., \& Klausner, J. S. (2006). Prevalence and risk factors for obesity in adult dogs from private US Medicine, $4(2)$, 177 -186.
42. Colliard, L., Ancel, J., Benet, J.-.,., Paragon, B.-M., \& Blanchard, G. (2006). Risk factors for obesity in dogs in France. Joumal of Nutrition, $136(7$ Suppl), 1951S-1954S. doi: $10.1093 /$ in/ $/ 366.7 .19515$
43. Weeth, L. P., Fascetti, A. J., Kass, P. H., Suter, S. E., Santos, A. M., \& Delaney, S. J. (2007). Prevalence of obese dogs in a population of dogs with nay Research, 68(4), 389-398. 44. Corbee, R.J. ((2013). Obesity in show dogs. Journal of Animal Physiology
and Animal Nutrition, 97(5), 904-910. doi: 10.111/ $/ 1439-0396.2012 .01366$
 45. Mao, I., Xia, Z., Chen, J., \& Yu, J. (2013). Prevalence and risk factors
for canine obesity sureed in weterinary practices in Beiiing, China for canine obesity surveyed in veterinary praa
Preventive Veterinary Medicine, 112, 438-442.
46. Clark, M., \& Hoenig, M. (2016). Metabolic effects of obesity and its 4. Ceraction with endocrine diseases. Veterinary Clinics of North America Small Animal Practice, 46, 797-815. doi: 10.1016/i.cvsm.2016.04.004 47. German, A. J. (2016). Obesity prevention and weight maintenance aitross. Weif
48. Day, M. J. (2017). One Health approach to preventing obesity in peo 10.1016/j.icpa.2017.03.009
49. Edney, A. T. \& Smith, P. M.((1986). Study of obesity in dogs visitin 391-396. doi: 10.1136/vr.118.14.391
50. Robertson, I. D. (1999). The influence of diet and other factors on ownerperceived obesity in privately owned cats from metropolitan Perth, Western Australia. Preventive Veterinary Medicine, 40, 75-85.
51. Kienzle, E., \& Bergler, R. (2006). Human-animal relationship of owners of normal and overweight cats. Journal of Nutrition, $136,1947 \mathrm{~S}-1950 S$.
52. Backus, R., \& Wara, A. (2016). Development of obesity: Mechanisms and physiology. Veterinary Clinics of North America: Small Animal Practice, 46, 773-784. doi: 10.1016/j.cvsm.2016.04.002
53. Serisier, S., Feugier, A., Venet, C., Biourge, V., \& German, A. J. (2013). Faster growth rate in ad libitum-fed cats: A risk factor predicting the ikelihood of becoming overweight during adulthood. Journal of Nutritional
Science, 2(e11), 1-8. doi cience, (eni), 1-8. do: 10.1017/7ns.2013.10
54. Vester, B. M., Sutter, S. M., Keel, T. L., Graves, T. K., \& Swanson, K. s. (2009). Ovariohysterectomy atiers body composition and adipose and
skeletal muscle gene expression in cats fed a high-protein or moderateprotein diet. Animal, 3(9), $1287-1298$. doi: $10.101 / /$ S1751731109004868
55. Fettman, M. J., Stanton, C. A., Banks, L. L., \& Hamar, D. W. (1997). Effects of neutering on bodyweight, metabolic rate and glucose tolerance of domestic cats. Research in Veterinary Science, 62, 131-136.
56. Robertson, I. D. (2003). The association of exercise, diet and other factors with owner-perceived obesity in privately owned dogs rom metropolitan Perth, WA. Preventive Veterinary Medicine, $58,75-83$
57. Jeusette, I., Detilleux, J., Cuvelier, C., Istasse, L., \& Diez, M. (2004). Ad libitum feeding following ovariectomy in female Beagle dogs: Effect on maintenance energy requirement and on blood metabolites. Journal of
Animal Physiology and Animal Nutrition, $88(3-4), 17-121$. doi: $10.111 / .1439$ 0396.2003.0046.-x
58. German, A. J., Blackwell, E., Evans, M., \& Westgarth C. (2017) Overweight 58 . German, A. J., Blackwell, E., Evans, M., \& Westgarth, C. (2017.). Ove
dogs exercise less frequently and for shorter periods: Results of a large dogs exercise less freguentre from the UK. Journal of Nutritional Science,
online survey of dog owners from e11. doi: 10.1017/jns.2017.6
59. Larsen, J. A. (2017). Risk of obesity in the neutered cat. Journal of Feline Medicine and Surgery, 19(8), $779-783$, doi: 10.1177/1098612X16660605 6o. Cave, N. J., Backus, R. C., Marks, S. L., \& Klasing, K. C. (2007). Oestradiol and genistein reduce food intake in male and female overweight cats after gonadectomy. New Zealand Veterinary Journal, $55(3)$, 13-119. de 10.1080/00480169.2007.36752
61. Belsito, K. R., Vester, B. M., Keel, T., Graves, T. . .., \& Swanson, K. S. (2009). Impact of ovariohysterectomy and food intake on body composition, Science, 87 , 594-602. doi: 10.2527/jas.2008-0887
62. Kanchuk, M. L., Backus, R. C., Calvert, C. C., Morris, J. G., \& Rogers, Q. R. (2oo3). Weight gain in gonadectomized normal and lipoprotein lipase R. (2003). Weight gain in gonadectomized normal and lipoprotein lipase
deficient male domestic cats results from increased food intake and not decreased energy expenditure. Journal of Nutrition, 133, 1866-1874. 63. Allaway, D., Gilham, M. S., Colyer, A., Jönsson, T. .,. Swanson, K. S.,
$\&$ Morris, P.J. (2016). Metabolic profling reveals effects of age, sexual development and neutering on plasma of young male cats. PLoS ONE, 11(12), 0168144 doi: 10.1371 journal pone. 0168144
64. Allaway, D., Gilham, M., Colyer, A., \& Morris, P.J. (2017). The impact of 64. Allawa, Dering on weight gain and energy intake in female kittens. Journa of Nutritional Science, 6 (e19), 1-4. doi: 10.1017/jins.2017.20
65. Flynn, M. F., Hardie, E. M., \& Armstrong, P. J. (1996). Effect of ovariohysterectomy on maintenance energy requirement in cats. Journal of
the American Veterinary Medical Association, $572-158$.
66. Hoenig, M., \& Ferguson, D. C. (2002). Effects of neutering on hormonal concentrations and energy requirements in male and female cats. America Joumal of Veterinary Research, 63, 634-639.
67. Brooks, D., Churchill, J., Fein, K., Linder, D., Michel, K. E., Tudor, K., Ward, E., \& Witzel, A. (2014). 2014 AAHA weight management guidelines for dogs doi: 10.5326//AAHA-MS-6331
68. de Godoy, M. R. C., \& Swanson, K. S. (2013). Companion animals symposium: Nutrigenomics: Using gene expression and molecularar biology data to understand p
10.2527/jas2012-5860
69. Backus, R. C., Cave, N. J., \& Keisler, D. H. (2007). Gonadectomy and high 69. Backus, R. C., Cave, N. .,., \& Keisler, D.H.H. (2007). Gonadectomy and high
dietary fat but not high dietary carbohydrate induce gains in body weight and fat of domestic cats. British Journal of Nutrition, 98, 641-650. doi: 10.101
Soooz114507758869
70. Wei, A., Fascetti, A. J., Villaverde, C., Wong, R. K., \& Ramsey, J. J. (2011). Effect of waler conlent in a cand foder 1 K.竍
7. Calvez, J., Weber, M., Ecochard, C., Kleim, L., Flanagan, J., Biourge, V., \& is best predicted by the NRC2006 equation. PloS ONE, 14(9), eoo2z3099. doi: 10.1371/journal.pone.0223099
72. Bomberg, E., Birch, L., Endenburg, N.., German, A. J., Neilson, J., Seligman, H., Takashima, G., \& Day, M.J. (2017). The financial costs, behaviour and psychology of obesity: A One Health analysis. Journal of Comparative Pathology, 156(4), 310-325. doi: 10.1016/j).jpa.2017.03.007
73. Murphy, M. (2016). Obesity treatment: Environment and behavio modification. Veterinary Clinics of North America: Small Animal Practice, 46 , 883-898. doi: 10.1016/j;ccsm.2016.04.009
74. Kienzle, E., Bergler, R., \& Mandernach, A. (1998). A comparison of the feeding behavior and the human-animal relationship in owners of normal and obese dogs. Joumal of Nutrition, 128, 2779S-27825.
75. German, A. J., Blackwell, E., Evans, M., \& Westgarth, C. (2017). Overweig dogs are more likely to display undesirable behaviours: Results of a large
online survey of dog owners in the UK. Journal of Nutritional Science, 6, e 14 . doi: 10.1017/ins.2017.5
76. Coy, A. E., Green, J. D., \& Behler, A. M. C. (2021). Why can't I resist those "puppy dog" (or "kitty cat") eyes? A study of owner attachment and factors .
77. Webb, T. L. (2015, March 26-28). Why pet owners overfeed: A selfregulation perspective. Proceedings Companion Animal Nutricio

Characteristics of ageing pets and their owners: Dogs v. cats. British Journal of Nutrition, 106, S150-S153.
79. Webb, T. L., du Plessis, H., Christian, H., Raffan, E., Rohlf, V., \& White, G. A. (2020). Understanding obesity among companion dogs: New measures of owner's beliefs and behaviour and associations with body condition scores. Preventive Veterinary Medicine, 180, 105029. doi: 10.1016/j. prevetmed.2020.105029
80. French, J. (2015 , March $26-28$). Developing population and personal behavioral interventions to address the public health challenge of pet
bbesity. Proceedings Companion Animal Nutrition Summit: The Future of Weight Management. Barcelona, Spain, 101-106.
81. Trayhurn, P., \& Wood, I. S. (2004). Adipokines: Inflammation and the 81. Trayhurn, P., \& Wood, I.S. (2004). Adipokines. Inflammation and the 347-355. doi: 10.1079/BJN20041213
32. Hamper, B. (2016). Current topics in canine and feline obesity, Veterinary Clinics of North Am
83. Park, H.J.J, Lee, S.EE, Oh, J.-H., Seo, K.-W., \& Song, K.-H. (2014). Leptin, adiponectin and serotonin levels in lean and obese dogs. $B M C$ Veterinar Research, 10, 113 .
84. Radin, M. J., Sharkey, L. C., \& Holycross, B. J. (2009). Adipokines: A review of biological and analytical principles and an update in dogs, cats, and horses. Veterinary Clinical Pathology 38(2), 136-156. doi: 10.1111/j.193 165X.2009.00133.X
85. Zorena, K., Jachimowicz-Duda, O., Ślęzak, D., Robakowska, M., \& Mrugacz, M. (2020). Adipokines and obesity, Potential link to metabolic
disorders and chronic complications. Interational Journal of Molecular Sciences, 21(10), 3570. doi: 10.3390/ijms21103570
86. Bastien, B. C., Patil, A., \& Satyaraj, E. (2015). The impact of weight loss on circulating cytokines in Beagle dogs. Veterinary Immunology and Immunopathology, 163, 174-182. doi: 10.1016/j,vetimm.2014.12.003
87. Eirmann, L. A., Freeman, L. M., Laflamme, D. P., Michel, K. E., \& Satyaraj, E. (2009). Comparison of adipokine concentrations and markers Research in Veterinary Medicine, $7(4)$, 1996-205.
88. Wakshlag. J. J., Strubbe, A. M., Levine, C. B., Bushey, J. J., Laflamme, D. P., Long, G. M. (2011). The effects of weigh coss on adpolnes and makers of Sooo7114511000560
89. Jeusette, I. C., Detilleux, J., Shibata, H., Saito, M., Honioh, T., Delobel, A., stasse, L., \& Diez, M. (2005). Effects of chronic obesity and weight loss on plasma ghrelin and
Science, $79,169-175$.
90. Blees, N. R., Wolfswinkel, J., Kooistra, H. S., \& Corbee, R. J. (2020). influence of macronutrient composition of commercial diets on circulating eptin and adiponectin concentrations in overweight dogs. Journal of Physiology and Animal Nutrition, 1046988 -706. doi: 10.1111/jpn.13285 91. German, A. J., Hervera, M., Hunter, L., Holden, S. L., Morris, P. J., Biourge, plasma inflammatory adipokines after weight loss in obese dogs Donestic Animal Endocrinology, 37, 214-226. doi: 10.1016/j.domaniend.2000.07.001 92. Weeth, L. P. (2016). Other risks/possible benefits of obesity. Veterinary vssm.2016.04.007
93. Sonta, T., Inoguchi, T., Tsubouchi, H., Sekiguchi, N., Kobayashi, K.,
 of vascular NAD(P)H oxidase to increased oxidative stress in animal model
of diabetes and obesity. Free Radical Biology \& Medicice, $37(1)$, $115-123$.
94. Tanner, A. E., Martin, J., Nutritional amelioration of oxidative stress induced by obesity and acute weight loss. Compendium on Continuing Education for the Practicing 95. Hoenis, M., Thomaseth, K., Waldron, M. \& Ferguson, D. C. (2007).
Insulin sensitivity fat distribution, and adipocytokine esensonse to di, diets in lean and obese cats before and after weight loss. American Journal of Physiology-Regulatory, Integrative, and Comparative Physiology, 292, R227-R234 96. Phungviwatnikul, T., Lee, A. H., Becchik, S. E., Suchodolski, J. S.,
\& Swanson, K. . . . (2o22). Weight ors and high-rotein, highh-fiber diet consumption impact blood metabolite profiles, body composition, dogs. Journal of Animal Science, 100(2), skab379. doi: 10.1093/ias/skab379 97. Johnston, S. A. (1997). Osteoarthritis: Joint anatomy, physiology, and ${ }_{27(4), 699-723 .}$
98. Pettitt, R. A. \& German, A. I. (2015). Investigation and management of canine osteoarthritis. In Practice, 37(S1), 1-8. doi: 10.1136/inp.h5773
99. Laflamme, D. P. (2006). Understanding and managing obesity in dogs and cats. Veterinary Clinics of North America: Small Animal Practice, 36 , 1283-1295
100. Marshall, W. G., Hazewinkel, H. A. W., Mullen, D., De Meyer, G., Baert, K., \& Carmichael, S. (2010). The effect of weight loss on lameness in obese dogs with osteoarthritis. Veten
doi: $10.1007 /$ S11259-010-9348-7
101. Kealy, R. D., Lawler, D. F., Ballam, J. M., Lust, G., Biery, D. N., Smith, G. K., \& Mantz, S. L. (2ooo). Evaluation of the effect of limited food consumption on radographic evidence of osteoarthritis in dogs. Journal of 102. Smith, G. K., Paster, E. R., Powers, M. Y., Lawler, D. F., Biery, D. N., and radiographic evidence of osteoarthritis of the hip joint in dogs. Journal of the American Veterinary Medical Association, 229(5), 690-693.
103. Kealy, R. D., Olsson, S. E., Monti, L., Lawle, D. F., Biery, D. ..., Helms,
R. W., Lust, G., \& Smith, G. K. (1992). Effects of limited food consumption on the incidence of hip dysplasia in growing dogs. Journal of the America Veterinary Medical Association, 201(6), 857-863.
104. Impellizeri, J. A., Tetrick, M. A., \& Muir, P. (2000). Effect of weight reduction on clinical signs of lameness in dogs with hip osteoarthritis. Journal of the American Vete 105. Lascelles, B. D. X. (2010). Feline degenerative joint disease. Veterinary
Surgery. 39(1), 2-13. doi: 10.1111/j.1532-950X.-200.005997.X
106. Scarlett, J. M., \& Donoghue, S. (1998). Associations between body condition and disease in cats . of the American Veterinary Medica Association, 212(11), 1725-1731.
${ }^{107 .}$ Clarke, S. P., Mellor, D., Clements, D. N., Gemmill, T., Farrell, M. of degenerative eiont disease in a hospital population of cats. Veterinary Record, 157, 793-799.
108. Appleton, D. J., Rand, J. S., \& Sunvold, G. D. (2001). Insulin sensitivity decreases with obesity, and lean cats with low insulin sensitivity are at greatest risk of glucose intolerance with weight gain. Journal of Feline
109. Larson, B. T., Lawler, D. F., Spitznagel, E. L., Ir., \& Kealy, R. D. (2003). mproved glucose torance with lifetime diet restriction favorably affec disease and survival in dogs. The Journal of Nutrition, 133(9), 2887-2892. 110. Thengchaisri, N., Theerapun, W., Kaewmokul, S., \& Sastravaha, A. 164
11. Chandler, M. L. (2016). Impact of obesity on cardiopulmonary disea doi: 10.1016/j.cvsm.2016.04.005
112. Pereira, N. . .,. Novo Matos, J., Baron Toaldo, M., Bartoszuk, U, Summerfield, N., Riederer, A., Reusch, C., \& Glaus, T. M. (2017). Cats with diabetes mellitus have diastolic dysfunction in the absence of structural . 133. van Hoek, I., Hodgkiss-Geere, H., Bode, E. F., Hamilton-Elliott, J.,
Mö́tskila, P., Palermo, V., Pereira, Y. M., Culshaw, G. J, Ivanova, A., Dukes-McEwan, J. (2020). Associations among echocardiography, cardia wiomarkers, ins. is asmptes Internal Medicine, 34(2), 591-599. doi: 10.1111/vim. 15730
114. Bach, J. F., Rozanski, E. A., Bedenice, D., Chan, D. L., Freeman, L. M., 114 . Bach, J. F., Rozanski, E. A., Bedenice, D., Chan, D. L., Freeman, L. M.,
Lofgren J. Oura, T. I., \& Hoffman, A. M. (zooz). Association of expiratory airway dysfunction with marked obesity in healthy adult dogs. American Journal of Veterinary Research, 68(6), 670-675. doi: 10.2460/ajv.68.6.670 115. García-Guasch, L., Caro-Vadillo, A., Manubens-Grau, J., Carretón, E., Camacho, A. A., \& Montoya-Alonso, J. A. (2015). Pulmonary function in obese vs non-obese cats. Journal of Feline Medicine and Surgery, 17(6), 494-499. doi: 10.1177/1098612X1454878
${ }^{\text {116. Manens, J., Bolognin, M., Bernaerts, F., Diez, M., Kirschvink, N., \& }}$ in healthy des. Veterinary Ioumal 1933(1), 217-221, doi 1006/ij tyil 2011.10.013
117. Della Maggiore, A. (2020). An update on tracheal and airway collapse 117. Della Maggiore, A. (2020). An update on tracheal and airway collapse 419-430. doi: 10.1016/j.cvsm.2019.11.003
118. FEDIAF The European Pet Food Industry. (2021, October). Nutritional suideines for complete and complementary pet food for
119. Pérez-Camargo, G. (2004). Cat nutrition: What is new in the old? Compendium on Continuing Education for the Practicing Veterinarian, $26(2$ Suppl A), $5-10$.
${ }^{120 .}$ Greeley, E. H., Spitznagel, E., Lawler, D. F., Kealy, R. D., \& Segre, M. (2006). Modulation of canine immunosenescence by life-long caloric restriction. Veterinary Immunology and Immunopathology, 11, 287-29, ${ }^{121 .}$ Peron, L., Rahal, S. C., Castilho, M. S., Melchert, A., Vassalo, F. G., Mesquita, L. R., \& Kano, W. T. (2016). Owner's perception for detectin Companion Animal Medicine, 31, 122-1244. doi: 10.1053/i.itam.2016.08.00 122. World Small Animal Veterinary Association. (2022). Global nutrition 122. World Small Animal Veterinary Association. (2022). Global nutrition
guidelines. https://wsava.org/global-guidelines/global-nutrition-suidelin
123. German, A. J., Holden, S. L., Mason, S. L.,., Bryner, C., Bouldoires, C Morris, P. J., Deboise, M., \& Biourge, V. (2011). Imprecision when using measuring cups to weigh out extruded dry kibbled food. Jourral of
Physiology and Animal Nutrition, $95(3)$, $368-373$. doi: $10.1111 / \mathrm{j} 1439-$ ${ }^{\text {Physiology and An }}$
124. Luedtke, E. S., Schmidt, C., \& Laflamme, D. (2011, June 15). The effec of food bow size on the amount of food fed to cats. Proceedings 11th States, 8 .
125. Murphy, M., Lusby, A. L., Bartges, J. W., \& Kirk, C. A. (2012). Size of food bowl and scoop affects amount of food owners feed their dogs. Journal of Animal Physiology and Animal Nutrition, $96(2)$, 237-241. doi: 10.111/j.14390396.2010.01144.X
126. Linder, D. E.,.Freeman, L. M., Morris, P., German, A. I., Biourge, V,
Heinze, C., \& Alexander, L. (2012). Theoretical evaluation of risk for Heinze, C., \& Alexander, L. (20212). Theoretical evaluation of risk for nutritional deficiency with caloric restriction in dogs. Veterinary Quarterly, 32(3-4), 123-129. doi: 10.1080/01652176.2012.733079
127. Grant, C. E., Shoveller, A. K., Blois, S., Bakovic, M., Monteith, G.,
\& Verbrugghe, A. (2020). Dietary intake of amino acids and vitamins compared to NRC requirement in obese cats undergoing energy restriction for weight loss. BMC Veterinary Research, 16, 146. doi: 10.1186//12917-020-$02649-0$
128. German, A. J., Holden, S. L., Mather, N. J., Morris, P. J., \& Biourge V. (2o11). Low-maintenance energy requirements of obese dogs after weight loss. British Journal of Nutrition, 106, S93-S96. doi: 10.1017/ Sooo711451100058
129. Laflamme, D. P., \& Kuhlman, G. (1995). The effect of weight loss regimen on subsequent weight maintenance in dogs. Nutrition Research 25(7), 1019-1028.
130. Gaylord, L., Remillard, R., \& Saker, K. (2018). Risk of nutritional deficiencies for dogs on a weight loss plan. Journal of Small Animal Practice 59, 695-703. doi: 10.1111/sap. 12913
131. Stockman, J., Fascetti, A. J., Kass, P. H., \& Larsen, J. A. (2013). Evaluation of recipes of home-prepared maintenance diets ford .ass IJumal of the merican Veterinary Medical Association, 242(11), 1500-1505. doi: 10.2460 ja ma.24.11.150
132. Willon, S. A., Villaverde, C., Fascetti, A. J., \& Larsen, J. A. (2019). Evaluation of the nutritional adequacy of recipes for home-prepared maintenance diets for cats. Journal of the American Veterinary Medi 133. Ligout, S. , Si, X., Vlaeminck, H., \& Lyn, S. (2020). Cats reorganise their feeding behaviours when moving from ad libitum to restricted feeding. Journal of Feinine Mdicine and Surgery, 22(10), 953-958. doi 10.11771098612X1990038
134. Wakshlag, J. J., Struble, A. M., Warren, B. S., Maley, M., Panasevich, M.. R., Cummings, K. J., Long, G. M., \& Laflamme, D. P. (2012). Evaluation
of dietary energy intake and physical activity in dogs undergoing a controlled weight-loss program.Journal of the American Veterinary Medical Association, 240(4), 413-419.
135. Krasuska, M., \& Webb, T. L. (2018). How effective are interventions designed to help owners to change their behaviour so as to manage the weight of their companis. A systematic review and metianalysis. Preventive Vete
prevetmed.2018.08.016
136. Webb, T. L., Krasuska, M., Toth, Z., du Plessis, H. R., \& Colliard, L. (2018). Using research on self-regulation to understand and tackle
the challenges that owners face elpelping their (overweight) dogs lose the challenges that owners face helping their (overweight) dogs lose
weight. Preventive Veterinary Medicine, 159, 227-231. doi: 10.1016 j. prevetmed.2018.08.017
137. Villaverde, C., Ramsey, J. J., Green, A. S., Asami, D. K., Yoo, S., \& Fascetti, expenditure in cats that is maintained after weight regain. Journal of Nutrition, 138, 856-860.
138. Vasconcellos, R. S., Borges, N. C., Goncalves, K. N., Canola, J. C., de Paula, F. J, Malheiros, E. B., Brunetto, M. A., \& Carciof, A. C. (2009). Protein intake during weight loss influences the energy required for weight loss and maintenance in cas.
139. Pan, Y. (2015, March 26-28). Intermittent caloric restriction: A new way to feed cats for weight loss. Proceedings Companion 1 ina Nutritio 140. Linder, D. E., \& Parker, V. .J. (2016). Dietary aspects of weight management in cats and dogs. Veterinary Clinics of North America: Smal n.2016.04.00
141. Deagle, G., Holden, S. L., Biourge, V., Queau, Y., \& German, A. J. (201 Congress Proceedings 2015. Birmingham, United Kingdom, 491.
${ }^{142}$. Deagle, G., Holden, S. L.,., Biourge, V., Queau, Y., \& German, A. J. Veterinary Internal Medicine, 29, 443-444.
143. German, A. J, Titcomb, J. Holden, S. L.,. Queau, Y., Morris, P. \& Biourge, V. (2015). Cohort study of the success of controlled weight loss programs in obese dogs. Journal of Veternary Inernal Meaicine, 29, 1549-1555
${ }^{144 .}$ Cline, M., Witzel, A., Moyers, T., Bartges J., \& Kirk, C. (2012). Comparison of high fiber and low carbohydrate diets on owner-perceive satiety of cats during weight loss. American Journal of Animal and
Veterinary Sciences, (44), 218-225. doi: 10.3844/ajavss.2012.218.225
145. Deagle, G., Holden, S. L., Biourge, V., Morris, P. J., \& German, A. J. 145. Deagle, G., Holden, S. L., Biourge, V., Morris, P. J., \& German, A.J.
(2014). Long-term follow-up after weight management in obese cats. Journal of Nutritional Science, 3 , e25. doi: 10.1017/ins.2014.36
146. German, A. J., Holden, S. L., Morris, P. J., \& Biourge, V. (2012). Longerm follow-up after weight management in obese dogs: The role of diet in preventing re
tvji.2011.04.001
147. Hannah, S. S., \& Laflamme, D. P. (1998). Increased dietary protein spares lean body mass during weight loss in dogs. Journal of Veterinary Internal Medicine, $12(3), 224$.

148. Laflamme, D. P., \& Hannah, S. S. (2005). Increased dietary protein promotes fat loss and reduces loss of lean body mass during weight loss | Interna |
| :---: |
| $62-68$. |

${ }^{149}$. Paddon-Jones, D., Westman, E., Mattes, R. D., Wolfe, R. R., Astrup, satiety The American Ioumal of Clinical Nutrition, $87(5), 1558 \mathrm{~S}-1515 \mathrm{~S}$. doi:z10.1093/ajen/87.5.5585
150. des Courtis, X., Wel, A., Kass, P. H., Fasceti, A.J., Graham, J. L., Havel, P. I., \& Ramsey, J. . (2015). Influence of dietary protein level on body composition and energy expenditure in calorically restricted overweight cats. Journal of diets on 151. Halton, T. L., \& Hu, F. B. (2004). The effects of high protein diets on
thermogenesis, satiety and weight loss: A critical review. Joumal of the American College of Nutrition, 23(5), 373 :-385.
152. Astrup, A., Raben, A., \& Geiker, N. (2015). The role of higher protein diets in weight control and obesity-related comorbidities. Intermational Journal of Obesity, 39, 721-722. doi: 10.1038/ijo.2014.216
153. Wei, A., Fascetti, A. .J., Liu, K. J., Villaverde, C., Green, A. S., Manzanilla,
E. G., Havel P., \& \& Ramsey I. . 2011$)$ Influence of high-protin E. G., Havel, P.J., \& Ramsey, J.J. (2011). Influence of a high-protein diet on
energy balance in obese cats allowed ad libitum access to food. Jounal of Animal Physiology and Animal Nutrition, $95(3)$, 359-367. doi: 10.1111/j.14360396.2010.01062.X
154. Kienzle, E., Schrag, I., Butterwick, R., \& Opitz, B. (2001). Calculation of gross energy in pet foods: New data on heat combustion and fibre analysis in
a selection of foods for dogs and cats. Journal of Animal Physiology and Animal a selection of foods for dogs and cats. Journal of Animal Physiology and Animal Nutrition, $85(5-6$), 148-157. doi: 10.1046/j.1439-0396.2001.00311.x
155. Weber, M., Bissot, T., Servet, E., Sergheraert, R., Biourge, V., \& German, A. J. (2007). A high-protein, high-fiber diet designed for weight Ioss improves satiety in dogs. Joumal of Veterinary Intermal Medicine, 21, 1203-120
156. Jackson, J. R., Laflamme, D. P., \& Owens, S. . . (1997). Effects of dietary fiber
content on satiety in dogs. Veterinary Clinical Nutrition, $4,130-134$.
${ }^{157}$. Jewell, D. .E., Toll, P. W., \& Novotny, B. J. (2000). Satiety reduces adiposity in dogs. Veterinary Therapeutics, $1(1), 17-23$
158. Söder, J., Höglund, K., Dicksved, J., Hagman, R., Erikson Röhnisch,
H., Moazzami, A. A., \& Wernersson, S. (2019). Plasma metabolomics reve H., Moazzami, A. A., \& Wernersson, S. (2019). Plasma metabolomics reveals
lower carnitine concentrations in overweight Labrador Retriever dogs. Acta Veterinaria Scandinavica, 61(1), 10. doi: 10.1186/131328-019-0.0446-4
159. Sunvold, G. D., Vickers, R. J., Kelley, R. L., Tetrick, M. A., Davenport, G. M., \& Bouchard, G. F. (1999). Effect of dietary
160. Center, S. A., Warner, K. L., Randolph, J. F., Sunvold, G. D., \& Vickers, J. R (2012). Influence of dietary supplementation with L-carnitine on metabolic rate, fatty acid oxidation, body condition, and weight loss in overweight cats American Joumal of Veterinary Research, $73(7), 102-1015$.
${ }^{161 .}$ Center, S. A., Harte, J., Watrous, D., Reynolds, A., Watson, T. D. G., Markwell, P. J, Millington, D. S., Wood, P. A., Yeager, A. E., \& Erb, H. . .. (2ooo). The clinical and metabolic effects of rapid weight loss in obese pet cats and
the influence of supplemental oral 1 -carnitine. Joumal of Veterinary Interal Medicine, 14, 598-608.
162. Nachvak, S. M., Moradi, S., Anjom-Shoae, J., Rahmani, J, Nasiri, M., Maleki,
 mortality from all causes, cancers, and cardiovascular diseases: A systematic review and dose-response meta-analysis of prospective cohort studies. Journal of the Academy of Nutrition and Dietetics, 119(9), 1483-1500.e17, doi: 10.0106/j. iand.2019.04.011
163. Yamagata, K., \& Yamori, Y. (2021). Potential effects of soy isoflavones on the Molecules, 26,5863
164. Aubertin-Leheudre, M., Lord, C., Khalil, A., \& Dionne, I.J. (2007). Effect of 6 months of exercise and isoflavone supplementation on clinical cardiovascular risk factors in obese postmenopausal women: A randomized, double-blind study. Menopause: The Journal of the North American Menopause Society, 14(4), 624-629. doi: 10.1097/gme.obo13e31802e2426b
165. Pan, Y. (2006). Use of soy isoffavones for weight management in spayed
neutered dogs. The FASEB Jounal, 20, A854-A855.
166. Pan, Y. (2007). Effect of isoflavones on body fat accumulation in neutered male and female dogs. The FASEB Journal, 21(5), A373. doi: 10.1096 fasebj.21.5.A373
${ }^{167 \text {. Pan, } \mathrm{Y} .(2012) \text {. Soy germ isoflavones supplementation reduced body fat }}$ Incumulal Medicine, 26(3), 812-813
Int metabolism in dogs. Journal of Veterinar $26(3), 812-813$.
168. Pan, Y., Tavazzi, I., Oberson, J.-M., Fay, L. B., \& Kerr, W. (2008). Effect of isoflavones, conjugated linoleic acid, and L-carnitine on weight loss and
oxidative stress in overweight dogs. Compendium: Continuing Education for Veterinarians, $3(A), 569$.
169. Fischer, M. M., Kessler A. M., Kieffer, D. A., Knotts, T. A., Kim, K., Wei, A.,
Ramsey, H. \& Faccetio A. Ramsey, IJ., \& Fascetti, A.J. (2017 . . Effects of obesity, energy restriction, and neutering on the faecal Imicrobiota of cats. British Joumal of Nutrition, 118,
$513-544$ doi: $10.1017 /$ Soooz7115577002397 513-524, doi: 10.1017/Sooo7114517002379
${ }^{170}$. Handl, S., German, A. J., Holden, S. L., Dowd, S. E., Steiner, J. M., Heilmann, R. M., Grant, R. W., Swanson, K. S., \& Suchodolski, J. S. (2013). Faecal microbiota 10.111//574-6941.12067
171. Bermudez Sanchez, S., Pilla, R., Sarawichitr, B., Gramenzi, A., Marsilio, F., Steiner, J. . M., Lidbury, J. A., Woods, G. R. T., German, A. J., \& Suchodolski, J. .S. (2020). Fecal microbiota in client-owned obese dogs changes after weight los .
${ }^{172 .}$ Xu, J., Verbrugghe, A., Lourenço, M., Cools, A., Liu, D.J. X., Van de Wiele, T., .esua, M., teckhaut, V., Van Immerseel, F., Vanhaecke, L., Campos, M., \& Hesta, M. (2017). The response of canine faecal microbiota to increased dietary protein is influenceed by body condition. BMC Veterinary Research, 13, 374. d 10.1186/s12917-017-1276-0
${ }^{173}$. Coelho, L. P., Kultima, J. R., Costea, P. . ., Fournier, C., Pan, Y., CzarreckiP., Jackson, J. R., Li, Q., \& Bork, P. (2018). Similarity of the dog and human gut microbiomes in gene content and response to diet. Microbiome, 6,72 . doi: 10.1186//40168-018-0450-3
174. Salas-Mani, A., Jeusette, I., Castillo, I., Manuelian, C. L., Lionnet, C., Iraculis, N., Sanchez, N., Fernandez, S., Vilaseca, L., \& Torre, C. (2o18). Fecal microbiota composition changes after a BW losss diet in Beagle dogs. Joumal of
Animal Science, $96(8)$, 1302-3111. doi: $10.10993 /$ /as /ky193 Animal Science, 96(8), 3102-3111. doi: 10.1093/ias/sky19
175. Macedo, H. T., Rentas, M. .., Vendramini, T. H. A., Macegoza, M. V., Amaral, A. R., Jeremias, J. T., de Carvalho Balieiro, J. . .., Pfrimer, K., Ferriolli, E., Pontieri,
C F. \& \& Brunetto, M. A. (2022) Weight-los in obese dogs promotes important C.F.f., \& Brunetto, M.A. (2022$)$. Weight-loss in obese dogs promitrobiot of lean
shifts in fecal microbiota profile to the exten of resembling microbiot on dogs. Animal Microbiome, $4(1)$, 6 . doi: 10.1186//42523-021-00160-x
176. Li, Q., Lauber, C. L., Czarnecki-Maulden, G., Pan, Y., \& Hannah, S. S. (2017). Effect of the dietary protein and carbohydrate ratio on gut microbiomes in dogs of different body conditions. m Bio, $8(1)$, eo1703-16. doi: $10.1128 / \mathrm{mBio} .01703-16$ 177. Li, $\mathrm{Q} .$, \& Pan, Y . (2020). Differential responses to dietary protein and carbohydrate ratio on gut microbiome in obese vs. lean cats. Frontiers in Microbiology, 11, 591462. doi: 10.3389/fmicb.2020.591462

(1) Ribs, Lumbar vertebrae, pelvic bones and all bony prominences evident from a distance; no
discernible body fat; obvious loss of muscle mass.
(2) Ribs, lumbar vertebrae, pelvic bones easily visible; (2) Ribs, lumbar vertebrae, pelvic bones easily visible;
no pappole fata some evidence of other bony
prominence; minimal loss of muscle mass.
-3 $\begin{aligned} & \text { Ribs easily palpated and may be visible with no } \\ & \text { palpablef fat; tops of lumbar vertebrae visible: }\end{aligned}$ peppaile eat; tops of lyumbar vertebrave visible;
pelvic bones beoming prominent; obvious waist and abdominal tuck.

(4) Ribs easily palpable, with minimal fat covering;
waist easily notod when viewed from above;
abdinal tuck evident.
(5ibs palpable without excess fat covering; waist abdomen tucked up when viewed from the side.

(6) $\begin{aligned} & \text { Ribs palpable with slight excess fat covering; waist } \\ & \text { is discernible viewed from above, but is }\end{aligned}$ prominent; abdominal tuck apparent.
$1 \begin{aligned} & \text { Ribs palpable with difficulty; heavy fat cover; } \\ & \text { noticeable fat deposits over }\end{aligned}$ noticeable fat deposits over rymburary area and cover, bese
of tail; waist absent or barely visible; abdominal of tail; waist absent of
tuck may be present.
(8) Ralpable only with significant pressure heavy far palpable only with significant pressurue, heary, fat
deposits over lumbar area and base of tail; waist deposits over lumbar area and base of tail; waist
absent; no abdominal tuck; obvious abdominal absent, no abdominal tuct:
distention may be present.
9 Massive fat deposits over thorax, spine and base of tail; waist and dabdominal tuck absents, fat depososits
on neck and limss; obvious abdominal distention.

mixane

- PURINA Institute

GET TO KNOW THE PURINA INSTITUTE.

Advancing Science for Pet Health.

At the Purina Institute, we believe science is more powerful when it's shared. That's why we're on a mission to unlock the power of nutrition to help pets live better, longer lives. A global professional organization, the Purina Institute shares Purina's leading-edge research, as well as evidence-based information from the wider scientific community, in an accessible, actionable way so veterinary professionals are empowered to put nutrition at the forefront of pet health discussions to further improve and extend the healthy lives of pets through nutrition.

For more information and a wealth of pet nutrition resources, visit www.Purinalnstitute.com and sign up for scientific communications.
By signing up, you'll receive updates on discoveries in nutritional science, free resources to support you in your nutrition conversations with clients, invitations to events, newsletters and much more from the Purina Institute.

www.Purinalnstitute.com/Sign-Up

Learn more at Purinalnstitute.com

